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Animal Models of Physiologic Markers of
Male Reproduction: Genetically Defined
Infertile Mice
by Curtis Chubb*

The present report focuses on novel animal models of male infertility: genetically defined mice bearing
single-gene mutations that induce infertility. The primary goal of our investigations was to identify the
reproductive defects in these mutant mice. The phenotypic effects of the gene mutations were deciphered
by comparing the mutant mice to their normal siblings. Initially testicular steroidogenesis and sperma-
togenesis were investigated. The physiologic markers for testicular steroidogenesis were steroid secretion
by testes perifused in vitro, seminal vesicle weight, and Leydig cell histology. Spermatogenesis was eval-
uated by the enumeration of homogenization-resistant sperm/spermatids in testes and by morphometric
analyses of germ cells in the seminiferous epithelium. If testicular function appeared normal, we investi-
gated the sexual behavior ofthe mice. The parameters ofmale sexual behavior that were quantified included
mount patency, mount frequency, intromission latency, thrusts per intromission, ejaculation latency, and
ejaculation duration. Females of pairs breeding under normal circumstances were monitored for the
presence of vaginal plugs and pregnancies. The patency of the ejaculatory process was determined by
quantifying sperm in the female reproductive tract after sexual behavior tests. Sperm function was studied
by quantitatively determining sperm motility during videomicroscopic observation. Also, the ability of
epididymal sperm to function within the uterine environment was analyzed by determining sperm capacity
to initiate pregnancy after artificial insemination. Together, the experimental results permitted the group-
ing of the gene mutations into three general categories. We propose that the same biological markers
used in the reported studies can be implemented in the assessment of the impact that environmental toxins
may have on male reproduction.

Introduction
The end product of successful male reproduction is

the deposition of spermatozoa capable of fertilization
into the female reproductive tract. To achieve this end,
the synchronization of a cascade of events is required.
These events include the release of gonadotropin from
the pituitary, testicular testosterone biosynthesis, pro-
duction of functional spermatozoa, and the complex be-
havior of ejaculation (1-5). The aim of our research
program is to elucidate the genetic control of the indi-
vidual events that constitute male reproduction.

Genetically defined mice are a major aspect of our
experimental approach. Mice were chosen as the animal
model because they are mammals that exhibit repro-
ductive characteristics approximating those of men (6)
and because of the voluminous knowledge of mouse ge-
netics (7-9). The onrginal working hypothesis was that
mutations of single genes controlling male reproduction
would be expressed phenotypically as either infertility
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or reduced fertility. An exhaustive search of the liter-
ature revealed that mutations at 40 genetic loci had been
reported to induce male infertility. The paucity of in-
formation about the mice bearing the gene mutations
was striking.
The goal of the described studies was to elucidate the

phenotypic effects of the single-gene mutations that in-
duce male infertility in mice. This goal was accomplished
by implementing a spectrum of biological markers of
male reproduction. In this report, we present an ov-
erview of our experimental results while emphasizing
the biological markers. We propose that the same bio-
logical markers can be used to assess the impact that
environmental toxins have on male reproduction.

Experimental Approach
The power of the experimental approach selected for

the studies lies in the fact that the phenotypic effects
of each gene mutation could be defined by comparing
sibling mice: one sibling being normal or an unaffected
heterozygote (+ / -) and the other sibling being the mu-
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tant. The primary difference between the two mice was
the single gene mutation. This paradigm permitted the
differences between the two mice to be assigned to the
gene mutation. At present, we cannot state in every
case if the effect is direct or a result of spurious pleio-
tropy (10).

Genetically Defined Mice
The review of the literature identified the gene mu-

tations reported to cause infertility in male mice. A list
of these gene mutations is presented in Table 1. Instead
of supplying unabridged references in the table, I have
cited primary literature sources that refer to the gene
mutation's effect on male fertility. The following re-
views provide comprehensive information about the
gene mutations: (7,16-24). Although I did not include
chromosomal variants (25), the T locus and t-haplotypes
(26,27), or the mutations at the c and p loci (7), all of
these have been reported to influence male reproduc-
tion. Gene mutations that have been reported recently
in the Mouse News Letter are not included in Table 1
because they may not be available to all investigators.
Finally, the Mouse News Letter (8) is the most valuable
publication for current information about mouse ge-
netics (including recent linkage maps) and for identi-
fying the sources of mutant mice (see Mouse News Let-
ter number 76 for the 1986 mouse gene list). During our
studies, the mutant and control mice were either ob-
tained directly or derived from breeding pairs gener-
ously provided by individual scientists or the Jackson
Laboratory.

Biological Markers of Male
Reproduction

Biological markers were selected on the basis of their
potential to assess the physiological function of the in-
dividual events that constitute male reproduction. A
brief discussion of biological markers for each event
follows. The reader will be referred to publications con-
taining more details about the experimental procedures
and alerted to possible difficulties.

Hypothalamus-Pituitary Function
The function of the hypothalamus-pituitary axis was

assessed directly by measuring plasma concentrations
of three hormones: luteinizing hormone (LH), follicle-
stimulating hormone (FSH), and prolactin (PRL). LH,
FSH, and PRL are the primary secretions of the an-
terior pituitary that modulate the function of Leydig
and Sertoli cells (18). In our studies, one plasma sample
from each animal was analyzed in order to detect sig-
nificant differences in hormone concentration; however,
multiple blood samples from each animal would be nec-
essary to obtain accurate measurements because of the
episodic secretion of the hormones (28). Assay details

can be located in the following references: LH (29), FSH
(30), and PRL (31).

Testicular Steroidogenesis
Testosterone is the predominant steroid secreted by

mammalian testes and is considered the primary an-
drogen (32). Two conventional methods were used to
estimate in vivo testosterone secretion: radioimmuno-
metric determination of plasma testosterone levels (33)
and quantitation of the weight of the androgen-depen-
dent seminal vesicles. Possible problems with these
markers include the pulsatile release of testosterone
(34) and the variable response of organs to androgen
stimulation (35).
The steroidogenic capacity of testes was quantified

by perifusing the testes in vitro with a defined perifu-
sion medium (33). Each testis was maximally stimulated
with LH. Initially, the venous effluent from the in vitro
perifused testes was analyzed for testosterone with a
specific antibody (33). If testosterone secretion by mu-
tant mouse testes was decreased, we constructed a se-
cretion profile of testosterone biosynthetic intermedi-
ates by using a gas chromatograph equipped with
capillary columns (36). Alterations in specific steroido-
genic reaction activities could be detected by comparing
the steroid secretion profiles of the mutant and normal
mouse testes (37).
In vitro perifusion provides several important fea-

tures for assessing the steroidogenic potential of testes.
For example, the complex interrelationship between
seminiferous tubules and Leydig cells is maintained,
secretory products are removed via the blood vascula-
ture thereby minimizing product inhibition, steroid se-
cretion is continuous and can be maximally stimulated,
steroidogenesis results only from endogenous cofactors
and substrates, and the controlled conditions approxi-
mate those occurring in vivo.
The biochemical analysis of Leydig cell function was

complemented with microanatomical studies. In these
studies, testes were perifusion-fixed, embedded in
methacrylate, and stained with toluidine blue (38). Mor-
phometric methods (38) were used to determine the
Leydig cell volume and mass. Concomitantly, Leydig
cell morphology was examined for gross alterations.

Spermatogenesis
Two methods were used to assess spernatogenesis:

enumeration of homogenization-resistant sperm/sper-
matids (39,40) and germ cell morphometric analysis (41).
In the first method, phase-contrast microscopic analysis
of sperm/spermatid nuclei in testicular homogenates
yielded a general estimation of spermatogenesis. This
method is usually accurate unless the gene mutation
alters the physical properties of spermatid nuclei and
renders them less resistant to homogenization. The
spermatogenic efficiency can be expressed as sperm/
spermatids per milligram testis, thereby negating the
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Table 1. Gene mutations causing male infertility in the mouse.

A. Mutations studied in the experiments described.

Genotype
Gene mutation Mutant Control Background strain Sourcea Reference
Atrichosis at/at +/_b ala did at + + eb (F33) Jackson (7)
Blind-sterile bs/bs +/- 129.AKR-bs (N3F5) Jackson (11)
Ames dwarf dfldf +/- closed colony Bartke (7)
Dwarf dw/dw +/- closed colony Bartke (7)
Flipper-arm' fl/ +1- ft (F8) Skow (7)
Hypogonadal hpglhpg +/- hpgl+ Jackson (7)
Hybrid sterility Hst-ls/Hst-lw Hst - i8s+ PWK or PWD (F20) Forejt (7)
Hightail Htl+ +/+ 49PB (N4F8) Skow (7)
Hemimelic extra toes Hxl+ +/+ B1O.D2/nSn-Hx/+ (F41) Jackson (7)
Hypothyroidd hyt/hyt +/- C.RF -hyt (NlOF15) Jackson (12)
Hypothyroid' hytlhyt +/- Random bred Wilson (12)
Limb-deformity" ld/ld' +l- IdJ/(F61) Jackson e

Little lit/lit +/- C57BL/6J -lit (N4F8) Jackson (13)
Oligotriche oltlolt +/- C3H/He Orl - olt Moutier (7)
Purkinje cell degeneration pcd/pcd +/- C57BL/6J -pcd (N1OF6) Jackson (7)
Pygmy pglpg +/- C3H/HeNIcrWfp -pg (N20F6) Jackson __e

Quaking qklqk +/- B6C3-a/a-qk (N6F1) Jackson (7)
Steel-Dickie Sl/Sld Sld/+ WCB6Fl/J_Sl/Sld Jackson (7)
Stubby stb/stb +/- stb + a/+ fi a (F59) Jackson (7)
Sex reversedf X/X Sxr X/Y B6C3-AwJ - ysxr Jackson (7,14)
Testicular feminization C57BL/6J-AW-J-Ta +/+ Tfm

TfmlY X/Y (N3F26) Jackson (7)
Viable dominant spotting W/W" WV/+ WBB6F1/J - W/W Jackson (15)
aThe sources were: A. Bartke, Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL; J. Forejt,

Institute of Molecular Genetics, Czechoslovak Academy of Sciences, Prague, Czechoslovakia; The Jackson Laboratory, Bar Harbor, ME; R.
Moutier, Department of Genetics, Centre de Selection et d'Elevage d'Animaux de Laboratoire, Centre National de la Recherche Scientifique,
Orleans Cedex, France; L. Skow, Biology Division, Oak Ridge National Laboratory, Oak Ridge, TN (Skow is no longer at ORNL-the contact
person is now L. Russell); C. Wilson, Department of Internal Medicine, University of Texas Health Science Center at Dallas.

b + /- represents + /+ or unaffected heterozygote.
'Significant neonatal mortality.
dInitially reported as petite (pet).
'Personal communication.
fActually a chomosomal translocation; provisional symbol Tp(Y)l Ct.

B. Mutations not studied in the experiments described.

Gene mutation Symbol Reason for deletion Reference
Ataxia ax,' Physical impairment (7)
Calvino cv Considered extinct (16)
Gyro Gy Unsuccessful breeding program (7)
Hemolytic anemia ha Not available (7)
Hotfoot ho4J Prohibitive cost (7)
Hop-sterile hop Considered extinct (7)
Hydrocephalic-polydactyl hpy Not available (7)
Ichthyosis ic Fertilea (16)
Jagged-tail jg Neonatal mortality (7)
Strong's luxoid lst Neonatal mortality (7)
Luxoid lu Prohibitive cost (7)
Luxate lx Physical impairment (7)
Marcel mc Considered extinct (7)
Motheaten me Neonatal mortality a
Viable-brindled Movbr Unsuccessful breeding program (7)
Cloud-gray sl"" Not available (7)
Shaker-short st Considered extinct (7)
Tremulous tm Not available (7)
Varitint-waddler Va Neonatal mortality (7)
Ballantyne's spotting Wb Not available (7)
Wobbler uT Neonatal mortality (7)

a Personal communication.
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effect of differences in testis weight. Interestingly, the
experimental data provided by our homogenization
method revealed that -200,000 sperm or spermatids/
mg testis was the value for normal spermatogenesis
regardless of genotype.

If a perturbation in spermatogenesis was indicated
by the homogenization data, sections of the perifusion-
fixed testes were morphometrically analyzed for the nu-
clear volume fraction (%) of five germ cell classes: sper-
matogonia, early spermatocytes (leptotene, zygotene),
late spermatocytes (pachytene, diplotene), round sper-
matids, and elongated spermatids (42). More precise
determinations of specific stages could be performed
when the testis sections were stained with Sidman's acid
fuchsin-toluidine blue (43).

Function of Male Genital Ducts and
Accessory Sex Glands
The genital ducts comprise the epithelium-lined tubes

that transport sperm from the testis to the exterior.
These ducts also contribute to the maturation and pro-
tection of sperm during their transit. The male acces-
sory sex glands, evaginations of the genital ducts, se-
crete the seminal fluid that mixes with sperm during
ejaculation (44).
The function of these ducts and glands was investi-

FLOW CHART FOR ANALYSIS OF STUBBY MICE

Testicular Steroidogenesis

I normal

Spermatogenesis

I normal

Plasma Hormones and Accessory Sex Organs

I normal

Natural Breeding Trials

I no litters

Sexual Behavior Tests

I no intromission or ejaculation

Epididymal Sperm Velocity

I normal

Artificial Insemination Tests

I normal

CONCLUSION: Infertility of stubby mice caused by
defective sexual behavior (Impotence)

FIGURE 1. Example of how the biological markers of male repro-
duction were applied in the reported studies.
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FIGURE 2. Summary of data for atrichosis mice (at/at) and their
normal siblings (?/+). Data for mutant mice are displayed as a
percentage of control values; absolute values are presented at the
top of the columns. Each value represents the mean ± SE of
results from 6-12 mature mice. Testosterone secretion by in vtitro
perifused testes maximally stimulated with LH was determined.
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FIGURE 3. Steroid secretion proffle for LH-stimulated, in vfitro per-
ifused testes of atrichosis (at/at) and control (+1-) mice. Each
value represents the mean ± SE (n = 4-6). Abbreviations are:
PREG (pregnenolone), DHA (dehydroepiandrosterone), DIOL
(androstenediol), PROG (progesterone), DIONE (androstenedi-
one), T (testosterone), DHT (dihydrotestosterone), 3a-DIOL (3a-
androstanediol), and 3,B-DIOL (3p-androstanediol). [From Chubb
and Nolan (57) with permission.]

gated by anatomical studies and by indirect assessments
of function. The weights of seminal vesicles, preputial
glands, epididymides, and penes were determined. Ad-
ditionally, the morphology of penes was microscopically
examined for the presence of key structures including
the corpus spongiosum, corpus cavernosum, os penis,
and epithelial papillae (45). The patency of efferent duc-
tules and epididymal ducts was elucidated by deter-
mining the number of sperm/spermatids in epididymal
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FIGURE 4. Summary of data for Steel-Dickie mice (Sid/Si) and their
siblings (Sldl+). Data for mutant mice are displayed as a per-
centage of control values; absolute values are presented at the top
of the columns. Each value represents the mean ± SE of results
from seven mature mice. The reduction in seminal vesicle weight
can be explained by the corresponding decrease in body weight.
Kidney weight was included because kidneys respond to andro-
genic stimulation.

Sperm Function
Sperm function was assessed by in vivo and in vitro

methods. The most critical test was the ability of the
mice to sire litters. If the mice did not sire litters, we
determined if the sperm could successfully enter the
uterus by enumerating the sperm in uterine homoge-
nates 1 hr after ejaculation. Additionally, we quanti-
tatively measured the velocity of epididymal sperm by
a videomicroscopic method similar to that reported by
Katz and Overstreet (46). In our tests, we cut the cauda
epididymides at their junction with the vas deferens
and expressed the epididymal sperm into either modi-
fied Toyoda medium (47) or Alvarez medium (48). After
incubation, the following parameters were measured:
net velocity, average path velocity, and linear index
(49). Also, the video recordings permitted analyses of
sperm size and percent motility.
The fertilizability of epididymal sperm under uterine

conditions was assessed by artificial insemination ofhor-
monally-primed female mice and the subsequent quan-
tification of live, near-term fetuses. Artificial insemi-
nation was performed similar to the vaginal route
method reported by Wolfe (50) with Depoprovera in-
jections 4 days after insemination (51; P. Olds-Clarke,
personal communication).
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(g) (mg) (ng/testis-h) (not expressed,mg) xs1i3

FIGURE 5. Summary of data for sex reversed mice (X/X Sxr) and
normal males (X/Y). Data for mutant mice are displayed as a
percentage of control values; absolute values are presented at the
top of the columns. Each value represents the mean ± SE of
results from six to eight mature mice. Testosterone secretion by
in vitro perifused testes maximally stimulated with LH was de-
termined.

homogenates with the aid of phase-contrast microscopy
(38). Finally, the normal function of the entire system
of ducts and accessory sex glands was indicated by the
presence of a vaginal (copulatory) plug and sperm in
the female reproductive tract following ejaculation.

Male Sexual Behavior
Male sexual behavior was analyzed quantitatively by

observing male mice paired with females induced into
behavioral estrus by hormonal injections (52). A series
of behavioral parameters were observed and recorded
during repetitive tests. These parameters included
mount latency, intromission latency, ejaculation la-
tency, number of head mounts, mounts without introm-
ission (time per mount, total number), mounts with
intromission (time per mount, total number, total num-
ber of intravaginal thrusts), and ejaculation duration
(53,54). In the intervals between sex behavior tests,
female mice paired with male mice were inspected for
vaginal plugs. The presence of vaginal plugs was con-
sidered as evidence that the male mice had the capacity
for male sexual behavior. The results from the sex be-
havior tests and natural breeding trials were compared
to determine if the more stressful conditions of the sex
behavior tests inhibited the male mice.

Utilization of Biological Markers
The biological markers ofmale reproduction were val-

idated for use with mice. However, all of the biological
markers were not assessed for each genotype. For ex-
ample, ifmouse testes were proven to be devoid ofgerm
cells, we would not analyze sexual behavior or sperm
function. A specific example from our stubby mouse
studies (55) is cited to demonstrate the sequence in
which the biological markers could be used to define the
phenotypic effects of a gene mutation on male repro-
duction (Fig. 1).
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Animal Models of Male Infertility
The biological markers of male reproduction were

used initially to classify gene mutations according to
their effect on testicular function. Based on these initial
results, certain gene mutations were selected for ad-
ditional study. A brief description of the reproductive
biology of the mutant mice studied in our laboratory is
presented in the following paragraphs. Please be aware
of two caveats: male infertility may be one of several
pleiotropic actions of the gene mutation and this report
presents only a brief overview of selected data collected
in our laboratory and other laboratories. The cited ref-
erences provide more information.

Gene Mutations That Affect
Spermatogenesis Only (at, bs, olt, qk, Sid,
Sxr, WV)

Atrichosis (at/at). The atrichosis mutant mouse is
an animal model of the Sertoli-cell-only syndrome (56).
At present, the etiology of the absence of germ cells is
unknown. However, our studies (57) demonstrated that

Leydig cell function was not impaired (Figs. 2 and 3).
Both sexes are sterile.
Blind-Sterile (bs/bs). Blind-sterile mouse testes

contain seminiferous tubules with either Sertoli cells
only or varying degrees of spermnatogenesis (58). Of
interest is the deleterious effect of the gene mutation
on the acrosomal development of spermatids (58). Tes-
ticular steroidogenesis is not affected (unpublished ob-
servations). Blind-sterile female mice are fertile (11).

Oligotriche (olt/olt). Spermiogenesis is abnormal in
oligotriche mice, but testicular steroidogenesis is not
affected by the gene mutation (59,60). Female oligo-
triche mice are fertile (60).
Quaking (qk/qk). The quaking and oligotriche gene

mutations have similar phenotypic effects on sperma-
togenesis and testicular steroidogenesis: abnormal sper-
matid flagellum development (61) and normal testicular
steroidogenesis (59). Quaking female mice are fertile (7).
Steel-Dickie (S1/Sld. Steel-Dickie mice have sev-

eral deficiencies, including the total absence oftesticular
and ovarian germ cells (7). Our studies (Fig. 4) con-
firmed the conclusion of Younglai and Chui (62) that
testicular steroidogenesis is not affected by the Steel-
Dickie gene mutation.
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FIGURE 7. Summary of data for viable dominant spotting mice (WI
W') and their siblings (WV/ +). Data for mutant mice are displayed
as a percentage of control values; absolute values are presented
at the top of the columns. Each value represents the mean ± SE
of results from 7-16 mature mice.

Sex Reversed (XIX Sxr). Although originally pos-
tulated to be a single-gene mutation, the sex-reversing
factor (Sxr) is now known to be a distal portion of the
Y chromosome that is translocated to the X chromosome
during meiosis (14). Genotypic X/X female mice bearing
Sxr develop a male phenotype (63). We provided evi-
dence that the Sertoli-cell-only testes of X/X Sxr mice
secrete the same amount of steroids as testes from X/
Y controls (64) (Figs. 5 and 6).

Viable dominant spotting (W/Wv). One ofthe pleio-
tropic effects of the WIW' genotype is the failure of
primitive germ cells to proliferate and migrate to the
embryonic gonads of both sexes (15). Few or no sper-
matogonia can be identified in the testes of WIW' mice.
The small size of the testes prevented their in vitro
perfusion; however, seminal vesicle weights (Fig. 7)
support the finding of Amador and co-workers (65) that
testicular steroidogenesis is not dramatically affected
by the gene mutation.

Gene Mutations That Affect
Spermatogenesis and Steroidogenesis
(df, dw, fl, hpg, Hst-1, Tfm)
Ames Dwarf(df/df). Both sexes ofAmes dwarfmice

exhibit infertility that can be reversed by growth hor-
mone, prolactin, or thyroxine replacement (66,67). The
gene mutation reduces body growth and depresses both
spermatogenesis and testicular steroidogenesis (38) via
its affect on the pituitary (66).
Dwarf (dw/dw). Although the phenotypes of dfldf

and dwldw are similar (66,67), the gene loci are on dif-
ferent chromosomes (df-mouse chromosome 11; dw-
mouse chromosome 16). The dwarf mouse testis is char-
acterized by seminiferous tubules with varying degrees
of spermatogenesis and diminished steroidogenesis (38)
(Figs. 8-10).
Flipper-Arm (fl/fl). Flipper-arm mice have not been

studied extensively because of their high neonatal mor-
tality. Other than initial report of the mutation (7), we
have provided the only experimental data about the

I Dwarf (dw/dw)

_ ?/+

100k

50k

Body Testis Testosterone Seminal Vesicles Spermotids
Weight Weight Secretion Weight per mg Testis

(g) (mg) (ng/testis h) (not expressed,mg) x10 3

FIGURE 8. Summary of data for dwarf mice (dwldw) and their normal siblings (?/+ ). Data for mutant mice are displayed as a percentage of
control values; absolute values are presented at the top of the columns. Each value represents the mean + SE of results from 8-11 mature
mice. Testosterone secretion by in vitro perifused testes maximally stimulated with LH was suppressed more than body weight in the
mutant mice. [From Chubb and Nolan (38) with permission.]
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FIGURE 9. Steroid secretion profile for LH-stimulated, in vitro perifused testes of dwarf (dwldw) and normal sibling (?/+) mice. See Fig. 3
legend for explanation of abbreviations. Each value represents the mean ± SE (n= 4-6). The relative decrease in secretion of all the
measured steroids suggests that the mutation is affecting steroidogenesis prior to pregnenolone production. [From Chubb and Nolan (38)
with permission.]
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FIGURE 10. Nuclear volume fractions (%) of five germ cell classes
in testes of dwarf mice (dwldw) and their normal siblings (?/+).
The values represent the mean of data collected from the evalu-
ation of 10,000 test points on sections from testes of two mice for
each genotype.

flipper-arm mice (38). One male survived to maturity
during our breeding program. Steroidogenesis was de-
creased and mature spermatids were not produced in
flipper-arm mouse testes.
Hypogonadal (hpg/hpg). Male hypogonadal mice

have immature reproductive tracts and small testes,
and spermatogenesis rarely advances past the primary
spermatocyte stage (68). This mouse has been used in
several experiments (69,70) that include the description
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Body Testis Testosterone Seminal Vesicles Spermatids
Weight Weight Secretion Weight per mg Testis
(g) (mg) (ng/testis-h) (not expressedcmg) x 10-3

FIGURE 11. Summary of data for hypogonadal mice (hpglhpg) and
their normal siblings (?/+). Data for mutant mice are displayed
as a percentage of control values; absolute values are presented
at the top of the columns. Each value represents the mean SE
of results from four to six mature mice. Testosterone secretion
was determined with perifused testes maximally stimulated with
LH.

of the molecular defects in the gene coding for lutein-
izing hornone-releasing hormone (71) and the reversal
of the mutation effects by gene therapy (72). Our ex-
periments confirmed the drastic effect of the hypogon-
adal gene mutation on male reproduction in the absence
of a decrease in body size (Fig. 11). Hypogonadal female
mice are infertile (68).
HybridSterility (Hst-1S/Hst-lW). One specific com-
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FIGURE 12. Summary of data for testicular feminized mice (Tfm/Y)
and normal siblings (+ /Y). Data for mutant mice are displayed as
a percentage of control values; absolute values are presented at
the top of the columns. Each value represents the mean ± SE of
results from four to ten mature mice.
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FIGURE 13. Summary of data for hemimelic extra toes mice (Hxl +)
and their normal siblings (+/+). Data for mutant mice are dis-
played as a percentage of control values; absolute values are pre-
sented at the top of the columns. Each value represents the mean
± SE of results from five to eight mature mice. Testosterone
secretion by in vitro perifused testes maximally stimulated with
LH was not significantly different between the two genotypes.
Seminal vesicle weights were significantly different (p < 0.05).

bination of the alleles at the hybrid sterility gene locus
(Hst-1' and Hst-if for Mus musculus domesticus and
Hst-1w8 and Hst-1wf for Mus musculus musculus) re-
sults in the production of sterile male progeny: male
mice bearing the Hst-1i/Hst-lw genotype are sterile
(73,74). Near-total spermatogenic arrest at the pachy-
tene stage causes the sterility. Our studies (75) con-
firmed the spermatogenic arrest and provided evidence

that the Hst-181Hst-1w8 genotype decreases testicular
steroidogenesis. Female hybrids are unaffected.

Testicular Feminization (Tfm/Y). Male mice bear-
ing the testicular feminization mutation resemble fe-
males phenotypically but have an XY karyotype (76).
The primary defect is androgen insensitivity due to the
absence of effective androgen receptors (77). Testes of
TfmlY mice are characterized by spermatogenesis ar-
rested at the spermatocyte stage or earlier (76) and
defective steroidogenesis (78). Our studies of TfmlY
mice provided data that were in agreement with the
earlier reports (Fig. 12). The testes could not be per-
fused in vitro but the significant decline in seminal ve-
sicle and kidney weight reflects their inability to re-
spond to androgen stimulation.

Gene Mutations That Do Not Affect Either
Spermatogenesis or Steroidogenesis
(Ht, Hx, hyt, lit, pg, stb)
Hightail (Ht/+). Although the initial report of

hightail mice (7) did not mention their fertility, inves-
tigators at Oak Ridge National Laboratory stated that
hightail males are infertile while hightail females are
unaffected (E. M. Kelly, personal communication). Our
preliminary studies (38) indicated that hightail mice
have normal testicular function. The cause of the re-
ported male infertility is not known.
Hemimelic Extra Toes (Hlx +). The hemimelic ex-

tra toes gene mutation causes male-specific infertility
(79). Our laboratory elucidated the effects of the mu-
tation on testicular function (36) (Figs. 13 and 14). We
concluded that testicular function is normal in the mu-
tant mouse. One possible etiology of the male infertility
is the incapacity to copulate effectively because of phys-
ical impairment (7).
Hypothyroid (hyt/hyt). Hypothyroid male and fe-

male mice have been reported to be infertile (12). The
gene mutation causes primary hypothyroidism. Thy-
roxine-supplemented feed reverses the deleterious ef-
fects of the gene mutation (12). In previous studies (38),
we demonstrated that testicular steroidogenesis and
spermatogenesis of hypothyroid mice were normal and
that the defective aspect of the male reproductive pro-
cess had not been defined. Our most recent studies of
the fertility and sexual behavior of hypothyroid male
mice suggest that they are fertile, although puberty
may be delayed (unpublished observations).

Little (lit/lit). Little male mice have been reported
to exhibit a marked incidence of infertility, although
little female mice are fertile (13). The primary defect of
little mice is isolated growth hormone deficiency partly
due to the altered function of somatotroph receptors for
growth hormone-releasing factor (80). Our investiga-
tions revealed that testicular steroidogenesis and sper-
matogenesis are normal in little mice (38) (Fig. 15). In
addition, videomicroscopic analyses of sperm motility
and sperm length (Table 2) suggested that sperm func-
tion and morphology were normal. Sex behavior tests
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FIGURE 14. Steroid secretion proffle for LH-stimulated, in vitro perifused testes of hemimelic extra toes (Hxl+) and normal sibling (+ /+)
mice. See Fig. 3 legend for explanation of abbreviations. The results are expressed as the mean ± SE of six determinations. While the
testosterone secretion rate in Fig. 13 was determined radioimmunometrically using venous effluent collected during the third hour of
perifusion, the values in this figure were derived by gas chromatographic analysis of venous effluent collected during the third and fourth
hours of perifusion. The difference in sampling may explain the different values. [From Chubb and Nolan (36) with permission.]

~~~~~~~~~~~~222
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Body Testis Testosterone Seminal Vesices Spermatids
Weight Weight Secretion Weight per mg Testis
(g) (mg) (ng/testis-h) (not expred,mg) x10@3

FIGURE 15. Summary of data for little mice (lit/lit) and their normal
siblings (?/ + ). Data for mutant mice are displayed as a percentage
of control values: absolute values are presented at the top of the
columns. Each value represents the mean + SE of results from
seven to eight mature mice. Testosterone secretion by LH-stim-
ulated, in vitro perifused testes was determined. Organ weights
and testosterone secretion determinations are allometrically cor-
rect. [From Chubb and Nolan (38) with permission.]

and natural breeding trials provided evidence that little
mice were more accurately described as subfertile in
contrast to infertile (unpublished observations). To-
gether, the experimental data indicated that the pri-
mary etiological factor of the subfertility of little male
mice is their diminutive size.

Table 2. Motility and length of sperm from little mice and their
control siblings.

na lit/lit+I-
Sperm length, ,um 84 117.9 ± 0.8b 119.5 + 0.5
Percent motility 480 58.8 ± 5.6 69.2 ± 2.2
Net velocity, ,um/sec 300 56.3 ± 9.3 55.5 ± 12.8
Average path velocity,

,um/sec 300 62.5 ± 9.7 63.9 ± 14.0
Linear index 300 0.90 0.02 0.89 0.01

a Number of sperm observed for each value; the epididymal sperm
were obtained from 3-4 mice for each genotype.
bMean ± SE.

Pygmy (pg/pg). The miniature size of pygmy mice
results from tissue unresponsiveness to growth hor-
mone (81). Although King (82) originally reported that
both sexes ofpygmy mice were infertile, it is now known
that the pygmy gene mutation on genetic backgrounds
favoring large body size may not induce infertility (7).
The latter observation agrees with our experimental
data demonstrating that spermatogenesis and testicular
steroidogenesis were not significantly affected by the
pygmy gene mutation (38). Consequently, the defect in
male reproduction of pygmy mice may be due either to
a physical barrier to copulation related to their small
body size or to an insufficient quantity of spermn in the
ejaculate due to their small testes.
Stubby (stb/stb). Stubby male mice were originally

reported as infertile by Lane and Dickie (83). Female
mice are unaffected by the gene mutation (83). We ex-
amined the testicular function of stubby mice and found
that testicular steroidogenesis and spermatogenesis
were normal (38) (Fig. 16). Subsequent studies dem-
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CD

M Stubby ( stb /stb)

_ ? /+

1001-

50k

Body Testis Tesosterone Seminal Vesicles Spermotids
Weight Weight Secretion Weight per mg Testis
(g) (mg) (ng/testis-h) (not expressed,mg) xio3

FIGURE 16. Summary of data for stubby mice (stblstb) and their
normal siblings (?/+). Data for mutant mice are displayed as a
percentage of control values; absolute values are presented at the
top of the columns. Each value represents the mean ± SE of
results from six to eight mice. Testosterone secretion by LH-
stimulated, in vitro perifused testes was determined. [From
Chubb and Nolan (38) with permission.]

Table 3. Quantitative analysis of the male sexual behavior of
stubby mice and their normal siblings.a

stblstb +I-
Mount latency, sec 169.2 ± 28.9b 90.7 ± 18.1
Intromission latency, sec 168.9 ± 32.4
Mounts without intromission:

Frequency, mounts/min 0.92 ± 0.06b 0.39 ± 0.07
Time per mount, sec 5.7 ± 0.4 4.8 ± 0.5

Mounts with intromission:
Frequency, mounts/min 0.71 ± 0.06
Time per mount, sec 27.5 ± 2.1
Total number of thrusts 166.3 ± 24.3
Interval between mounts,
sec 43.8 ± 6.1

Total mounts per min 0.92 ± 0.06 1.1 ± 0.05
Mounts before intromission 1.8 ± 0.2
Mounts with intromission

before ejaculation 7.2 ± 1.3
Head mounts per mouse 1.0 ± 0.3b 0.1 ± 0.1
Ejaculation latency, sec 585.5 ± 85.6
Ejaculation duration, sec 20.0 ± 0.5
Test period duration, min 45 ± ob 9.8 ± 1.4
Ejaculated sperm, x 106 0 27.3 ± 1.2
Female receptivity score 4 ± 0.1 4 ± 0.2
Number of observationsc 43 53
aValues were derived by determining the mean of the included

tests of each mouse and calculating the x ± SE of the means for all
12 mice of each genotype.

b Significant difference (p <0.05, Wilcoxon Rank Sum Test).
c Tests were not included in data analyses if more than one female

was used or if the receptivity score for the female was < 3 since the
effects of these situations on male sexual behavior could not be con-
sidered comparable to those of acceptable tests.

onstrated that stubby mice were infertile during natural
breeding trials, and furthermore, that they did not in-
tromit or ejaculate during sex behavior tests (55) (Table
3). Next, we elucidated spern motility by quantitative
videomicroscopy and tested sperm function by artificial
insemination. Both of these tests supported the normal
function of stubby mouse sperm (unpublished obser-
vations). Together, the experimental observations pro-
vided unequivocal evidence that stubby mice are infer-
tile because they are impotent. The etiology of the
impotence may involve the central nervous system.

Conclusions and Applications
Our studies have provided the first comprehensive

assessment of the effects that the described gene mu-
tations have on male reproduction in mice. The phen-
otypic effects were elucidated by the application of sev-
eral biological markers of male reproduction. We
propose that these same biological markers would be
effective in defining the action of environmental toxins
on male reproduction. Figures 17A and B contain our
suggestions concerning the sequence in which the bio-
logical markers could be implemented.
Two hypothetical situations will be discussed. In the

first situation, an environmental chemical has been de-
termined to cause male infertility. The flow diagrams
in Figures 17A and B could aid in pinpointing the del-
eterious action of the toxin. In the second scenario, the
goal is to assess the reproductive toxicology of a chem-
ical. Details about the dosage, time schedules, and pro-
tocols will not be discussed (84-87). Initially, the ex-
perimental animals would be paired with behaviorally-
primed females. Since the end point is the presence of
a copulatory plug at a defined time, one person could
monitor a large number of animals for reproductive de-
fects. Also, the same male mice could be tested repet-
itively. The male mice could be examined for sperm
output by quantifying the number of ejaculated sperm;
again, this involves simple analysis and repetitive ob-
servations of the same mice. After the initial noninva-
sive markers were used, the more time-consuming, in-
vasive biological markers could be assessed to identify
specific causes of male infertility.

Inbred mice offer important advantages in the animal
bioassays ofreproductive risks. The advantages include
genetic uniformity, availability of different inbred
strains, and the control of conditions affecting male re-
production (age, social experience, environment, dis-
ease, genotype). Additionally, mice have short gener-
ation times and are reproductively active under diverse
conditions (88).
We have described biological markers that primarily

reflect physiological functions. The markers could be
used as screening tests for the selection ofmore complex
analyses. These biochemical and molecular analyses
could focus on in vitro fertilization (89), postimplanta-
tion development (90), testicular autoimmunity (91),
sperm capacitation (92), Sertoli cell function (93), sperm
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FIGURE 17. Suggested sequences for applying the biological markers of male reproduction. The '+' and '-' indicate results that are either
similar or different, respectively, to those of control mice. Possible etiologies of the reproductive defects are displayed in bold letters.

antigens (94), germ cell cytogenetics (85), or Leydig cell
ultrastructure (95).

Future Directions
The mutant mice are novel animal models that may

assist in the development of accurate diagnostic param-

eters and effective therapies for male infertility. Fur-
thermore, the mouse models represent a spectrum of
reproductive defects and, as such, provide experimental
tools for discovering new biological markers of male
reproduction that could be evaluated noninvasively and
be more sensitive than current markers. Future analy-
sis of the gene mutations will be directed to deciphering
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the biochemical events that are nearer to the primary
gene action.
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